

AN AMPERSAND BIOMEDICINES COMPANY

Disruptive Antibody Discovery & Development Solutions for Challenging Targets

Company Presentation

Key company metrics

HIGH-END TECHNOLOGY BOUTIQUE

finding antibodies against challenging targets with therapeutically relevant functions

14 YEARS

in monoclonal antibody research and development

4-5 MONTHS

from library generation to lead selection

SUCCESSFUL DRUG DISCOVERY

antibodies from our discovery platform currently in clinical development in high medical need indications

45+ COLLABORATIONS

with pharmaceutical companies in US, EU, and Japan

Unique positioning for agile antibody discovery

AbCheck overcomes the challenges of various, 'difficult-to-develop' targets

Opportunity:

• GPCRs are one of the largest receptor families. Currently, mostly targeted by small molecules.

Challenge and AbCheck solution:

- GPCR antibodies are difficult to develop as GPCRs have only small accessible extracellular regions and epitopes
- AbCheck combines proprietary immunization protocols and the microfluidics platform for early discovery of rare binders as millions of antibodysecreting cells can be screened per day.

GPCRs

ADCs

Opportunity:

• ADCs combine an antibody and an active payload primarily used in oncology.

Challenge and AbCheck solution:

- ADCs require both high affinity as well as high internalization to be functional
- > AbCheck's microfluidics platform simultaneously screens for both affinity and internalization

Opportunity:

• Most antibodies in oncology target extracellular proteins. Targeting MHC-I peptide complexes also allows targeting of internally expressed oncoproteins increasing number of potential targets.

Challenge and AbCheck solution:

- Targeting MHC-I/peptide complexes requires high specificity due to toxicity risk
- AbCheck's narrow-specificity sorting enables selecting highly specific candidates with pM Kd

MHC-I/Peptide Complexes

Opportunity:

• The majority of antibodies developed so far have been antagonists rather than agonists.

Challenge and AbCheck solution:

- Agonist and antagonist antibodies have historically been difficult to develop as affinity ≠ functionality
- Using microfluidics AbCheck combines screening for affinity and function in single step

High-throughput microfluidics system for fast and more efficient antibody discovery

Tailored, high throughput method for sampling/sorting of immune plasma cell repertoires with functional resolution at single-cell level:

Fastest and most efficient way to isolate antibodies with therapeutically relevant biological functions

Advantages:

- Direct sorting for function and/or other critical criteria can be combined <u>in one step!</u>
- High throughput of *Millions* of droplets per day
- No amplification during library construction resulting in clonal diversity as high as natural repertoire

AbCheck's Single Copy Integration Site technology enables efficient, streamlined discovery of novel functional antibody candidates

- Mammalian libraries enable expression and secretion of antibodies with **native post-translational modifications and folds**
- Single copy integration ensures stable expression of candidate mAbs and possibility of functional sorting
- → Process is independent of immunization
- → Proof-reading is integrated in the secretion step, <u>enriching for developable candidates</u>
- → Enables a <u>highly cost- & time-efficient</u> path to lead selection and characterization

AbCheck's platform enables high throughput screening of previously 'difficult-to-develop' targets with unprecedented cost & time efficiency

Abcheck's reliable cloning and antibody production process enables subsequent thorough characterization

Step 1

Ab genes from each sorted cell are amplified, sequenced and cloned in parallel for expression of full-length Abs

Step 2

Binding properties of MAbs are confirmed by plate and FACS-based assays, and positive clones are taken forward for functional characterization and full binding kinetics (SPR)

AN AMPERSAND BIOMEDICINES COMPANY

Technology applications

Microfluidics allows screening of current as well as next-generation targets for both classical antibodies and ADCs

We have demonstrated the reliable discovery of a large number of clones with high affinity using our microfluidics platform

Screening (Classical Binding)

Lead Selection

Discovery of antibodies to a non-challenging, classical tumor target

Target: Transmembrane protein with extracellular domain, validated target overexpressed in many carcinomas

Microfluidics Solution

- Isolation of Antibody-secreting cells from spleens of chicken immunized with DNA or protein and screening of 1.5 million droplets
- Sorting of droplets with a positive signal (range 0.2% 1% per droplet, depending on the respective chicken splenocyte) and amplification of VH and VL genes via single-cell RT-PCR

Powerful Results

- Enabled selection for specific criteria out of **3,000-15,000 Antibodies**
- Antibodies from 168 droplets selected for further analysis, successful cloning, **sequencing and testing of 153 (93%) Antibodies, >90% of tested clones confirmed as positive. Monomeric affinities of selected clones in the picomolar to single-digit nanomolar Kd range**

Agonist mAb development is initially focused on binding, however this has led to many discontinuations as binding ≠ functionality

We have developed a universal system to analyze GPCR targets independent of their Ga subunits to identify agonists

Functional screening of all GPCRs regardless of G protein subunit

Assay windows can be further optimized by monoclonal selection of stably-expressing cells

Our Microfluidics platform can also be used for antagonistic antibodies by pre-stimulating the target with agonist

% Inhibition on Functional Assay shows 2 strong antagonistic antibodies detected

Our Microfluidics platform is designed towards both key requirements for potent ADCs: selectivity and internalization

Repertoire Generation

Screening (Internalization / ADCs)

Lead Selection

Internalization

Key for ADC discovery:

Antibody-drug conjugates (ADCs) are a recognized potent class of targeted therapeutics. ADCs need to be selective for a given target and also trigger high internalization rates for their functionality.

Key Therapeutic Areas: Oncology, Immunology, Infections

Our Internalization Assay allows for high-throughput screening of internalizing antibodies for ADC development

Our platform was able to detect multiple ADCs with higher potency compared to clinical stage-candidates

We are also capable of screening antibodies for next-generation tumor therapy targets such as MHC-peptide complexes

Repertoire Generation

Screening (Novel Targets)

Novel Targets

- MHC complexes display intracellular peptides on the surface of cells and alert the immune system to ongoing tumorigenic processes inside a cell. Antibodies specifically targeting MHC-peptide complexes open up the therapeutic drug target space to otherwise unattainable tumor-specific cytosolic proteins
- AbCheck's microfluidics / dual-staining-based narrow-specificity sorting offers an easy and efficient way of generating highly specific, high-affinity antibodies to MHC-Ipeptide complexes in our proprietary transgenic rabbit model
- High selectivity in this process can also be used for other targets that require a high degree of selectivity, e.g., mutated vs. non-mutated receptors, species cross-reactivity → significant upside potential
- AbCheck generated a transgenic rabbit model carrying the human MHC-I gene; immunization of the transgenic rabbits with a hMHC-I-peptide-complex induced a very robust immune response and significantly increased specificity compared to WT

Lead

Selecti

Differential sorting for high-specificity antibodies

Dual staining of distinct antigens enables direct detection of mAbs with high specificity against homologous targets such as MHC-peptide complexes, mutated variants of receptors or orthologues

Our platform allows generation of specific picomolar affinity antibodies to MHC-I-peptide complexes

Exemplary specific mAbs

- AbCheck's microfluidics / dual-stainingbased narrow-specificity sorting offers an easy and efficient way of generating highly specific, high-affinity antibodies to MHC-I-peptide complexes in our proprietary transgenic rabbit model
- High selectivity in this process can also be used for other targets that require a high degree of selectivity, e.g., mutated vs. non-mutated receptors, species cross-reactivity → significant upside potential

Our platform technology presents an all-in-one solution for current needs to address multiple historically 'challenging' targets

AN AMPERSAND BIOMEDICINES COMPANY

AN AMPERSAND BIOMEDICINES COMPANY

Contact Us

www.abcheckantibodies.com

bd@abcheckantibodies.com